穿越200年前,疫苗疗法是怎样诞生的?

来源:    发布日期:2016-03-30 10:32:43   阅读量:0

文/周程(北京大学科学与社会研究中心教授)


接种牛痘

  一些学者19世纪后半叶在微生物学领域建立一系列不朽的功绩。迄今220年来,疫苗研究不断迎接人类健康面临的重重挑战,挽救了全球无数人的生命。

  继英国学者罗伯特·胡克(Robert Hooke,1635-1703)于1665年使用复合显微镜第一次观察到了软木组织中的蜂房结构,并将其命名为“细胞”之后,1676年荷兰的显微镜专家列文虎克(Antoni van LeeuwenHoek,1632-1723)使用自制的单透镜显微镜第一次观察到了水滴中的“小动物”,开启了人类通往微生物研究的大门。

  列文虎克和众多17世纪显微镜专家,通过不断收集新的事实、发现新的现象为人类打开了一幅新的令人激动的自然图景,并为人类加深对微生物世界的理解奠定了重要的基础。

  进入19世纪后,由于产业革命促进了机械制造技术的发展,加上光学理论的进步,显微镜的性能有了明显的改善。

  发现病原菌的黄金时代

  19世纪70年代,炭疽热在欧洲开始流行,导致牛、羊等家畜的死亡率急速攀升。乡村医生出身的德国细菌学家罗伯特·科赫(Robert Koch,1843-1910)和法国微生物学家、化学家巴斯德(Louis Pasteur,1822-1895)几乎同时启动了炭疽热研究。

  科赫使用显微镜对患炭疽热致死的家畜血样进行了观察,并从这些患病家畜的血样中发现了一种非常特别的棒状体。这些棒状体在周围环境恶化时会变成可以抵抗恶劣环境的芽孢;周围环境变好后,芽孢又会转化为棒状体。这些事实表明,患炭疽热的动物血液中的棒状体确实是杆菌,而且这些杆菌会变成处于休眠状态的芽孢以增强对环境的适应性。之后,科赫将在动物体外培养出来的已繁衍多代的杆菌注射到健康的动物体内后发现,这些动物又出现了炭疽热症状。

  巴斯德用显微镜进行观察后肯定了科赫的上述发现,同时他还指出,炭疽菌的芽孢有很强的耐热性,可以在地面上存活很长时间。为隔断炭疽热的传播途径,必须杀死已感染的动物,并进行焚烧或深埋处理。

  1883年,印度和埃及等地先后爆发霍乱,欧洲也面临着巨大的威胁。应埃及政府的请求,科赫亲自率队赴亚历山大港施救。尽管埃及的霍乱很快就自动平息了,但是科赫还是从霍乱病人身上找到了一种比结核杆菌更小、弯曲得像新月一样的弧状细菌。虽然可以借助饮用水和病人衣物进行传播,但在干燥条件下极易死亡,而且用普通的消毒剂都可以杀死它们。科赫基于多年的研究实践,于1884年总结出了确认某种特定细菌为某种特定疾病的病原菌的四条原则。

  在科赫的实践与理论的引领下,19世纪八九十年代成了科学家发现病原菌的黄金时代。例如,1883年德国的克莱布斯(Theodor Albrecht Edwin Klebs,1834-1912)和莱夫勒(Friedrich L ffler,1852-1915)独立发现了白喉杆菌, 1894年法国的耶尔森(Alexandre Yersin,1863-1943)发现了鼠疫杆菌, 1905年,科赫因发现结核杆菌并证明了其病原性而被授予诺贝尔生理学或医学奖。

  接种疫苗法诞生

  微生物学的快速发展为细菌致病学说提供了越来越多的佐证。既然某种特定的疾病是由某种特定的细菌引发的,那么我们不仅要设法控制病原菌的传播渠道,而且还要设法增强人体战胜细菌入侵的免疫力,再就是设法找到既能杀灭这些侵入体内的病原菌,又不会对人体造成伤害的办法。研制疫苗、化学药物和抗生素等诉求就是在这样的背景下提出来的。

  谈到免疫,不能不提及英国医生爱德华·詹纳 (Edward Jenner,1749-1823),因为是他开启了免疫治疗研究的先河。

  詹纳曾听他所在地区的奶场女工和农民说过:人传染上牛痘后,就再也不会得天花病。1796年,詹纳把正在出牛痘的女工皮肤上的水泡中的液体,接种到一名健康儿童的身上。如事先所料,这名儿童患了牛痘,但很快就得以恢复。詹纳又给他接种了天花痘,这名儿童没有出现天花病症。詹纳的实验成功了。这导致一种预防疾病的方法——接种疫苗法得以诞生。

  受詹纳的启发,巴斯德在研究炭疽热的防治方法时,曾试过接种疫苗法。为降低炭疽热细菌的毒性,巴斯德对其进行了加热处理,然后将其接种到一群羊的身上,同时让另一群羊保持原状。结果,没有接种的羊群全都患炭疽热死去,而事先接种过少量低毒炭疽热细菌的羊却没有死。

  此后,巴斯德又对炭疽热疫苗进行了改进,并使用类似方法,研制出了可抵御狂犬病和家禽霍乱病的疫苗。但是,在当时使用以毒攻毒的方法治疗恶性传染性危险相当大。


疫苗史,图中左侧男子为开启了免疫治疗研究的先河的英国医生爱德华·詹纳(Edward Jenner)

  血清疗法治疗白喉

  在相当长的一段时间里,没有人能够解释清楚疫苗为何能够有效抵御传染病的侵袭。在探究疫苗的作用机理方面,科赫的两名研究助手德国的埃米尔·冯·贝林(Emil von Behring,1854-1917 )和日本的北里柴三郎(Kitasato Shibasaburo,1853-1931)做出了先驱性的贡献。1890年,贝林和北里一起发文宣布了一项重要发现:他们不断给动物注射不至于致病的少量破伤风杆菌,这时,在动物的血液中会产生一种抗毒素,以中和注入体内的破伤风杆菌毒性。他们还指出,可以用这个办法从已经获得破伤风免疫力的动物身上提取含有抗毒素的血清,注射给其他动物以增强其对破伤风的免疫力。

  与此同时,贝林、北里还在努力寻求治疗白喉的方法。白喉是一种急性呼吸道传染病,儿童染上此病后很容易死亡。贝林等人注意到,感染白喉后幸存下来的儿童成年后一般都不会再得这种疾病。这意味着,在与疾病的斗争中,儿童的身体中有可能产生了某种抗体,这种抗体保留在血液中,从而起到保护作用。在德国细菌学家保罗·埃尔利希(Paul Ehrlich,1854-1915)的协助下,贝林和北里开始运用血清疗法治疗白喉,并在1892年白喉流行期间,成功地提取出了新的白喉抗毒素。由于在血清疗法研究方面贡献突出,贝林于1901年荣幸地成为首届诺贝尔生理学或医学奖获得者。


正在做实验的巴斯德

  “魔术子弹”

  化学疗法的基础则是由科赫的另一名助手德国的保罗·埃尔利希奠定的。埃尔利希18世纪70年代在莱比锡大学医学院求学期间,就对苯胺等化学染料的作用机理产生了兴趣,因为生物组织用化学染料着色后,在光学显微镜下其微观结构能看得更加清楚。

  当时,德国的光学工业和染料工业发展得非常迅猛,从而使德国既能制造出技术更为先进的光学显微镜,又能生产出颜色更为丰富的高性能染料。埃尔利希最初关心的是如何用不同的染料给不同的细胞或病原体着色,但他在从事细胞或病原体与染料的亲和力研究过程中,不幸染上了轻度肺结核。在埃及休养两年后,埃尔利希于1889年返回德国,和贝林、北里等人一起开始从事白喉抗毒素研究。

  由于白喉抗毒素研究受到了肯定,德国政府于1896年底成立了一个专门研究血清的研究所,并决定由埃尔利希担任所长。当时,埃尔利希迫切希望弄清楚的是,白喉毒素究竟是如何攻击人体的,血清中的抗毒素又是如何抵御毒素使它不致伤害人体细胞的。

  为了搞清毒素与抗毒素之间的化学反应机理,埃尔利希开始把眼光重新投向他早年开展过的化学染料研究。经过一段时期的探索后,他意识到:既然染料可以只附着在特定的病原体上,而不附着在人体细胞上,那么就有可能从现有染料中筛选出一种药物,它只攻击病原体,而不攻击人体细胞,因此对人体无毒副作用。埃尔利希将这种径直攻击病原体的药物称作为“魔术子弹”。

  1899年,埃尔利希被任命为新成立的法兰克福实验治疗研究所所长,于是他开始带领一班人去寻找能够着色并杀死特殊靶标的“魔术子弹”。埃尔利希偶然得知,一种名为 “阿托西耳”(Atoxyl)的染料能够杀死锥体虫治疗昏睡症,但存在严重的副作用。埃尔利希想到:能不能对阿托西耳的分子结构加以修饰,保持其药性却又没有毒性呢?于是,助手们合成出了千余种阿托西耳衍生物,并开始逐个做筛选实验。1907年,实验做到了第606号样品,但效果仍然不佳,大家只好把它放到一边,继续做下一个筛选实验。

  1908年,传来了一个令人振奋的消息,埃尔利希将和俄国细菌学家梅契尼科夫(IlyaIlich Mechnikov,1845-1916)一起被授予诺贝尔生理学或医学奖,以奖励他们在免疫学方面所作的贡献。然而,埃尔利希此时的化学疗法研究才刚刚步入佳境。

  当时,梅毒的病原体——苍白密螺旋体被法国学者发现不久,而且日本细菌学家秦佐八郎(1873-1938)已找到了用这种螺旋体感染兔子的方法。因此,埃尔利希决定设法从合成出的众多化合物中找到一种能够有效破坏梅毒螺旋体的药物。恰巧,埃尔利希过去的同事北里柴三郎的弟子秦佐八郎来实验室找他。于是,埃尔利希让秦佐八郎留在自己的实验室开展与治疗梅毒有关的实验研究。

  1909年6月,秦佐八郎用第606号样品进行实验时发现,尽管该样品对锥体虫没有特别的效果,但它对引起梅毒的螺旋菌却有很强的破坏力。用动物实验进行多次验证之后,埃尔利希又令人做了大量的临床实验。结果表明,606号含砷化合物对治疗梅毒确实有效。于是,埃尔利希为该药申请了专利。1910年,606号药物正式批量生产,取名为“撒尔佛散”(Salvarsan,“拯救”之意)。

  撒尔佛散的发现标志着一类药物开始问世,这类药物实际上是一种合成出的抗体,它能够寻找并且攻击侵入体内的微生物,而不伤害患者或宿主。作为第一种抗菌类化学药物的发明者,埃尔利希被公认为化学疗法之父。

  1912年,溶解性更好,更易操作,但疗效稍差的治疗梅毒新药“砷凡钠明”(Arsphenamine)开始上市。这是一种编号为914的含砷化合物,埃尔利希称其为新撒尔佛散(Neosalvarsan)。尽管606号和914号化合物有很强的毒副作用,但由于找不到其他更好的办法,所以在青霉素等抗生素类药物问世之前,世界各国,包括中国一直用606和914治疗梅毒这种具有高度破坏力的传染性疾病。■

  [文章来源]微信公众号:知识分子